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Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity
~vorticity! states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the
fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield
attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics
~i.e., turbulence! may be traced back to the most primordial structure of the Navier-Stokes equation; namely,
the driven triadic interaction.@S1063-651X~96!00911-7#

PACS number~s!: 47.27.Cn, 05.45.1b, 03.20.1i, 47.52.1j

The connection between turbulence and vorticity dynam-
ics has been much discussed@1#. We shall demonstrate that
the characteristic unpredictable turbulent dynamics is already
captured by the fundamental incompressible Navier-Stokes
triadic interaction of three vorticity or helicity~we shall use
these terms interchangeably! states, in which the effects of
the remaining states are modeled as a simple driving term.
We shall further demonstrate that the qualitative details of
the dynamics depend crucially on the shape of the triangle
formed by the three wave vectors associated with these vor-
ticity or helicity states.

The flow velocityu~r ,t! of a fluid can be represented as
the superposition of a complete set of helicity states using
the Chandrasekhar-Kendall representation@2#. These states
are labeled by the wave vectork i and the associated helicity
si , which can take on the values of61. If we isolate, from
the complete set of coupled dynamical equations produced
by the Navier-Stokes equation for the flow of a constant-
density fluid, a set of three equations whose wave vectors
satisfy k11k21k350, we can explore the dynamics of the
primordial triadic interaction. For simplicity, we shall con-
sider the case when the spectral coefficients,ci(t), i51,2,3
all have the same value of the complex phase~which we
shall choose to be zero, which describes the case of real-
valued spectral coefficients! @3#. Then the evolution equa-
tions for the coefficients are@4#

ċ1~ t !1nk1
2c1~ t !5~s3k32s2k2!c2~ t !c3~ t !,

ċ2~ t !1nk2
2c2~ t !5~s1k12s3k3!c3~ t !c1~ t !, ~1!

ċ3~ t !1nk3
2c3~ t !5~s2k22s1k1!c1~ t !c2~ t !,

wheren is a viscous coefficient and the ‘‘dot’’ refers to a
derivative with respect to time.~We have chosen the overall
coupling on the right-hand side of the three equations to be
unity, since any other value can be scaled away by a suitable
renormalization of theci ’s.! If the ci(t)’s are replaced by
Li(t)’s, the angular momenta along the principal axes of the
moment of inertia tensor of a freely moving rigid body, if the
siki ’s are replaced byI i

21’s, the inverse of the three principal
moments of inertia, and if alson is set equal to zero, these
equations become Euler’s equations of free rigid-body mo-

tion, as was noted by Waleffe@5#. A discussion of the prop-
erties of their solutions can be found in Bender and Orszag
@6#.

Without any driving, one notes that Eqs.~1! imply that

1

2

d

dt (i51

3

ci
2~ t !52n(

i51

3

ki
2ci

2~ t !<0,

so that ast→`, ci(t)→0, i51,2,3, which is the only equi-
librium solution of these equations.

Let us now assume that none of theki ’s equals zero and
that

s3k3,s2k2,s1k1 ,

which implies that at least one of the quantitiesk1
2 andk3

2 is
greater thank2

2. Had we not isolated the three retained states
from the complete set of states representing the fluid velocity
governed by the Navier-Stokes equation, the states that we
have kept would have been driven by the coupling to the
other states as well as by any driving originating in the
boundary conditions. In order to simulate the effects of such
driving while maintaining the autonomous nature of the three
evolution equations, we shall insert a driving term into the
equations by reversing the sign of the linear dissipation term
in the evolution equation forc2:

ċ2~ t !2nk2
2c2~ t !5~s1k12s3k3!c3~ t !c1~ t !.

Observe first that (1/2)d/dt( i51
3 c i

2(t) is no longer negative
definite, whereas the flow continues to possess a contracting
volume by virtue of Eqs.~1! because

(
i51

3
] ċi~ t !

]ci~ t !
5~2k1

22k3
21k2

2!n,0.
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Before proceeding further, we shall find it convenient to
rewrite our three equations using the following definitions:

c1~ t ![F S 2 k̃2
2

s3k32s1k1
D S k̃3

2

s1k12s2k2
D G1/2y1~ t !,

c2~ t ![F S k̃3
2

s1k12s2k2
D S k̃1

2

s2k22s3k3
D G1/2y2~ t !,

c3~ t ![F S k̃1
2

s2k22s3k3
D S 2 k̃2

2

s3k32s1k1
D G1/2y3~ t !;

wherek̃ i
2[nk i

2. Then Eqs.~1! become

ẏ152 k̃1
2~y11y2y3!,

ẏ25 k̃2
2~y21y3y1!, ~2!

ẏ352 k̃3
2~y31y1y2!.

There are five points of equilibrium, none of which is
stable for arbitrary infinitesimal perturbations:~0,0,0!,
~1,21,1!, ~21,21,21!, ~21,1,1!, and ~1,1,21!. At the ori-
gin, there is a two-dimensional stable manifold and a one-
dimensional unstable manifold. If one takes the time depen-
dence of the infinitesimal perturbations about any of the

remaining four equilibrium points to be exp(lt), one obtains
the following characteristic equation that specifiesl:

l31a2l
21a050, ~3!

where

a2[ k̃1
21 k̃3

22 k̃2
2.0, a0[4k̃1

2k̃2
2k̃3

2.0.

One may verify by Cardan’s method for solving cubic
equations@7# that Eq.~3! has one real negative root and two
complex roots. To find the sign of the real parts of the com-
plex roots, we setl equal tog1iv, wherevÞ0. The real
and imaginary parts of Eq.~3! then yield, respectively,

g31a2g
223v2g2a2v

21a050,

v253g212a2g.

Eliminatingv from the first equation by means of the second
leads to

g5
a0

2~2g1a1!
2.0.

Hence, unlike the origin, each of the latter four equilibrium
points of Eqs.~2! has a one-dimensional stable manifold and
a two-dimensional unstable manifold. These equations also
can be expressed in the following way:

FIG. 1. The value ofk̃1 is set equal to the square root of the
golden section ratio~F!1/2, which equals~1.618 . . . !1/2. The values
of k̃2 and k̃3 are 1 and 1/~F!1/2, respectively.~a! y3, exhibiting
regular periodic motion, shown as a function of time after the tra-
jectory has reached the limit cycle;~b! a projection of the limit
cycle on they1-y2 plane;~c! a projection of the limit cycle on the
y2-y3 plane;~d! a projection of the limit cycle on they1-y3 plane;
~e! a three-dimensional plot of the limit cycle.

FIG. 2. The values ofk̃1, k̃2, and k̃3 are 1.33, 1, and 1/1.33,
respectively.~a! y3, exhibiting period doubling, shown as a func-
tion of time after the trajectory has reached the limit cycle;~b! a
projection of the limit cycle on they1-y2 plane;~c! a projection of
the limit cycle on they2-y3 plane;~d! a projection of the limit cycle
on they1-y3 plane;~e! a three-dimensional plot of the limit cycle.
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dỹ1~ t !

dt
52 k̃1

2 exp@~ k̃1
21 k̃2

22 k̃3
2!t# ỹ2~ t !ỹ3~ t !,

dỹ2~ t !

dt
5 k̃2

2 exp@2~ k̃1
21 k̃2

21 k̃3
2!t# ỹ3~ t !ỹ1~ t !, ~4!

dỹ3~ t !

dt
52 k̃3

2 exp@~2 k̃1
21 k̃2

21 k̃3
2!t# ỹ1~ t !ỹ2~ t !,

where ỹ1(t)5y1(t)exp(k̃ 1
2t), ỹ2(t)5y2(t)exp~2k̃ 2

2t!,
ỹ3(t)5y3(t)exp(k̃ 3

2t).
We can assume without any significant loss of generality

that

k̃1
2. k̃3

2. ~5!

Then the only argument of the three exponentials that can
change sign as thek̃i ’s are varied subject to the constraint,
Eq. ~5!, is in the equation specifyingdỹ3(t)/dt. The argu-
ment equals zero when

c~ k̃1
2,k̃2

2,k̃3
2!50, ~6!

wherec( k̃ 1
2 ,k̃ 2

2 ,k̃ 3
2)[ k̃ 1

22 k̃ 2
22 k̃ 3

2. Although k̃1
2, k̃2

2, andk̃3
2

are three independent parameters, we can absorb one of
them, sayk̃2

2, into a rescaling of the time, replacingk̃ 2
2t by t

~sincek̃2
2 has already been assumed to be greater than zero!,

if we simultaneously replace each of thek̃ i
2’s by their values

in units of k̃2
2. We thus do not lose any qualitative aspect of

the solution by settingk̃2
2 equal to 1 in Eqs.~4! or ~2!.

We shall now explore numerically the effect of crossing
the boundary,c( k̃ 1

2,1,k̃ 3
2)50, upon the character of the so-

lution of Eqs.~2!. We shall further limit the two-dimensional
domain spanned by the two remaining parametersk̃1

2 and k̃3
2

by imposing the constraintk̃ 1
25( k̃ 3

2)21. Equation~6! is then
satisfied whenk̃1

2 equals 1.618 . . . ,which is the golden sec-
tion ratio F. Our numerical calculations, usingMATH-

EMATICA, appear to demonstrate the presence of strange,
chaotic attractors whenc( k̃ 1

2,1,1/k̃ 1
2).0. @The only attrac-

tors that we have observed whenc( k̃ 1
2 ,k̃ 2

2 ,k̃ 3
2),0 have been

simple limit cycles.#
Recalling thatk1, k2, andk3 in Eq. ~1! represent the three

sides of a triangle leads us to observe that the angle opposite
the largest side,k1, appears to be obtuse for the equations to
produce a chaotic attractor. In order that the three wave num-
bers actually represent three sides of a triangle, we must
further impose

F1/2, k̃1,F.

In Figs. 1~a!–1~e! we show properties of the attractor
when k̃15F1/2. The trajectory of the attractor is a simple
limit cycle that could be the edge of an orientable surface.
The attractor is symmetric under the simultaneous replace-
ment y1→2y1 , y2→2y2 , y3→y3 . As an example of the
time evolution of a coordinate, we displayy3(t) in Fig. 1~a!,
which is seen to execute simple periodic motion.

When we increasek̃1 to the value 1.33, we observe in
Figs. 2~a!–2~e! that the attractor is now a simple twisted
closed loop that could define the edge of a Mo¨bius strip, a
nonorientable surface. Concomitant with this twist is the ab-
sence of the simple symmetry that we observed in our first
case. In this case they3 coordinate exhibits the period-
doubling characteristic of the route to chaos, which we ap-
pear to achieve, as depicted in Figs. 3~a!–3~g!, when we
further increasek̃1 to the value 1.35.

In Fig. 3~a!, the evolution ofy3 has become irregular.
Figures 3~b!–3~e! exhibit the structure of the apparently cha-
otic attractor. In Fig. 3~f!, a Poincare´ section in they350
plane of the attractor depicted in Figs. 3~b!–3~e! is shown as
an additional aid to visualizing the three-dimensional appear-
ance of the attractor. Finally, in Fig. 3~g!, we show a return
map of y3max as well as a line segment ofy3max

n11 5y3max
n .

@Each successive maximumy3max
n11 of y3(t) is plotted as a

FIG. 3. The values ofk̃1, k̃2, andk̃3 are 1.35, 1, and 1/1.35, respectively.~a! y3, exhibiting irregular motion, shown as a function of time
after the trajectory is on the apparently chaotic attractor;~b! a projection of the attractor on they1-y2 plane;~c! a projection of the attractor
on they2-y3 plane;~d! a projection of the attractor on they1-y3 plane;~e! a three-dimensional plot of the attractor;~f! a Poincare´ section
of the attractor aty350; ~g! the return map ofy3 max as well as a line segment ofy3 max

n11 5y3 max
n .
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function of the previous maximumy3max
n .# If one were to

imagine a continuous curve placed through this map, the
magnitude of its slope over most of the domain would be
greater than 1, as it also would be where the curve would
intersect the line segment. As a result, there is no stable
point. Indeed, there may be no multicycle stable points when
this map is repeatedly iterated. These numerical results con-
tain the standard indicators of the route to chaos, and so we
believe that the cyclically symmetric equations, Eqs.~2! @or
equivalently, Eqs.~1!# have chaotic attractors.

These equations merit further study. The connection be-
tween turbulence and vorticity dynamics has been much dis-
cussed. Here we have shown the characteristic unpredictabil-
ity of turbulent dynamics, even at the level of the
fundamental interaction of the incompressible Navier-Stokes
equation: the triadic interaction of vorticity states, when
the effects of the remaining states are modeled as a driver for
the triad. The significance of the study lies in the rich intri-
cacy of results produced by such a simple model. In particu-
lar, we have shown that the shape of the triangle of wave
numbers of the three interacting helicity states affects the
nature of the dynamics. When the angle opposite the largest
side k1 is obtuse, a chaotic attractor results; when acute, a
simple limit cycle occurs. This boundary requires more pre-
cise delineation. Might there be some relevance here to the

development of turbulence and the formation of coherent
structures in fluids? One can increase gradually the number
of modes whose detailed dynamics are retained. What effect
does retaining additional modes have on the fluid’s dynamics
when a similar autonomous phenomenological driving term
is maintained?

As a bonus, the cyclic symmetry of these equations sug-
gests the potential for many applications. Other nonlinear
cyclically symmetric sets of equations have been previously
studied@8#. We have noted that, in addition to our equations
being relevant to a Navier-Stokes fluid, they apply to the
motion of a driven, dissipative rigid body. There have been
and continue to be suggestions that equations leading to
chaos may have the potential for explaining magnetic dyna-
mos @9#. Exploring the possibility of constructing a
~geo!magnetic dynamo based on the dynamics of our equa-
tions seems worthwhile.
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for a careful reading of this manuscript; and my son, Ari, for
the proof that the complex roots of Eq.~3! have a positive
real part. This work was supported by the U.S. Department
of Energy.
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